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Abstract

Let K be a nonempty closed convex proper subset of a real uniformly convex and uniformly

smooth Banach space E; T : K-E be an asymptotically weakly suppressive, asymptotically

weakly contractive or asymptotically nonextensive map with FðTÞ :¼ fxAK : Tx ¼ xga|:
Using the notion of generalized projection, iterative methods for approximating fixed points of

T are studied. Convergence theorems with estimates of convergence rates are proved.

Furthermore, the stability of the methods with respect to perturbations of the operators and

with respect to perturbations of the constraint sets are also established.
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1. Introduction

Let E be a real normed linear space with dual En: We denote by J the normalized

duality mapping from E to 2En

defined by

Jx :¼ ff nAEn: /x; f nS ¼ jjxjj2 ¼ jjf njj2g;
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where / � ; �S denotes the generalized duality pairing. It is well known that if En is

strictly convex then J is single-valued and if En is uniformly convex, then J is
uniformly continuous on bounded subsets of E: We shall denote the single-valued
duality mapping by j:

Let K be a subset of a Banach space E: A map T : K-K is called a strict

contraction if there exists kA½0; 1Þ such that jjTx 	 Tyjjpkjjx 	 yjj; and is called
nonexpansive if, for arbitrary x; yAK ; jjTx 	 Tyjjpjjx 	 yjj: The map T is called
asymptotically nonexpansive if, for each x; yAK ; we have jjTnx 	 Tnyjjpknjjx 	 yjj;
where fkng is a sequence of real numbers such that limn-N kn ¼ 1: It is obvious that
for asymptotically nonexpansive mappings it may be assumed that knX1 and that
kiþ1pki; i ¼ 1; 2;y :

Let K be a nonempty convex subset of a real normed linear space E: For strict
contraction mappings, nonexpansive and asymptotically nonexpansive mappings T

of K into itself with a fixed point in K ; three well-known iterative methods, the
celebrated Picard method, the Mann iteration method (see, for example, [15]) and the
Ishikawa iteration method (see, for example, [13]), have successfully been employed to
approximate such fixed points. If, however, the domain of T ; DðTÞ; is a proper

subset of E (and this is the case in several applications), and T maps K into E; these
iteration methods may not be well defined. Under this situation, for Hilbert spaces,
this problem has been overcome by the introduction of the metric projection in the
recursion formulas (see, for example, [8–10]). The advantage of this is that if K is a
nonempty closed convex subset of a Hilbert space H and PK : H-K is the metric
projection of H onto K ; then PK is nonexpansive. This fact actually characterizes
Hilbert spaces and consequently, it is not available in more general Banach spaces.
In this connection, Alber [1] recently introduced a generalized projection operator
PK in a Banach space E which is an analogue of the metric projection in Hilbert
spaces.

Let E be a real normed linear space. Consider the functional defined by

Vðx; xÞ :¼ jjxjj2 	 2/x; jðxÞSþ jjxjj2 for x; xAE; ð1:1Þ

where jðxÞAJðxÞ: Observe that, in a Hilbert space H; (1.1) reduces to Vðx; xÞ ¼
jjx 	 xjj2H ; x; xAH:

The generalized projection PK : E-K is a map that assigns to an arbitrary point
xAE the minimum point of the functional Vðx; xÞ; that is, PK x ¼ %x; where %x is the
solution to the minimization problem

Vðx; %xÞ :¼ inf
xAK

Vðx; xÞ: ð1:2Þ

Existence and uniqueness of the operator PK follow from the properties of the
functional Vðx; xÞ and strict monotonicity of the mapping J (see, for example, [4]).
In Hilbert space, PK ¼ PK :

Some properties of PK used in the sequel are the following (see, for example, [4]).
(a) The operator PK is the identity on K :
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(b) The operator PK produces an absolutely best approximation of xAE relative
to the functional Vðx; xÞ; that is,

VðPK x; xÞpVðx; xÞ 	 Vðx;PK xÞ; 8xAK :

Consequently, PK is the conditionally nonexpansive operator relative to the
functional Vðx; xÞ in Banach spaces, i.e. VðPK x; xÞpVðx; xÞ; 8xAK :

(c) The operator PK is uniformly continuous on each bounded subset of E: Let
x; yAE; jjxjjpR: jjyjjpR: Then,

jjPK x 	PK yjjp4LRg	1
E ðjjJðxÞ 	 JðyÞjj=2RÞ;

where g	1
E is the inverse function to gEðeÞ (defined in Section 2).

Let K be a nonempty subset of a Banach space E: A map T : K-E is called
strongly suppressive on K if there exists 0oqo1 such that for all x; yAK ;

VðTx;TyÞpqVðx; yÞ: ð1:3Þ

T is called weakly suppressive of class CcðtÞ if there exists a continuous and

nondecreasing function cðtÞ defined on Rþ such that c is positive on RþWf0g;
cð0Þ ¼ 0; limt-N cðtÞ ¼ þN and 8x; yAK ;

VðTx;TyÞpVðx; yÞ 	 cðVðx; yÞÞ: ð1:4Þ

The map T is called nonextensive if

VðTx;TyÞpVðx; yÞ 8x; yAK : ð1:5Þ

It is trivial to see that in Hilbert spaces, nonextensive operators are nonexpansive,
and vice versa; and strongly suppressive operators coincide with strict contractions.
Alber and Guerre-Delabriere [4] (see also [2,3,5]) introduced the above classes of
nonself maps and, assuming the existence of fixed points, proved convergence
theorems with the help of the generalized projection maps.

It is our purpose in this paper to first introduce the classes of asymptotically

weakly suppressive, asymptotically nonextensive and asymptotically weakly contrac-

tive nonself maps which are important generalizations of the classes of maps studied
by Alber and Guerre-Delabriere [4]. Then, assuming the existence of fixed points for
maps in our classes of operators, and using several results of Alber and Guerre-
Delabriere [4], we prove convergence theorems with estimates of the convergence
rates and establish the stability of our iterative methods with respect to perturbations
of operators and with respect to perturbations of the constraint sets. Our theorems
extend and improve several results of [4].

2. Preliminaries

A Banach space E is called smooth if for every xAE with jjxjj ¼ 1; there exists a

unique jAEn such that jjjjj ¼ jjjðxÞjj ¼ 1 (see, e.g., [14]). The modulus of smoothness
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of E is the function rE : ½0;NÞ-½0;NÞ defined by

rEðtÞ :¼ sup
jjx þ yjj þ jjx 	 yjj

2
	 1 : jjxjj ¼ 1; jjyjj ¼ t

� �
:

A Banach space E is called uniformly smooth if and only if limt-0
rEðtÞ
t ¼ 0: It is

known (see, e.g., [11,14,16]) that rEðtÞ is continuous, increasing and rEð0Þ ¼ 0:

Moreover, hEðtÞ :¼ t	1rEðtÞ is continuous, nondecreasing and hEð0Þ ¼ 0:
The modulus of convexity of E is the function dE : ð0; 2�-½0; 1� defined by

dEðeÞ :¼ inf 1	 x þ y

2

��� ������ ��� : jjxjj ¼ jjyjj ¼ 1; e ¼ jjx 	 yjj
n o

:

E is uniformly convex if and only if dEðeÞ40 for every eAð0; 2�:
It is well known (see, e.g., [11,14,16]) that dEðeÞ is continuous, increasing and

dEð0Þ ¼ 0: Moreover, gEðeÞ :¼ e	1dEðeÞ is continuous and increasing.
Let K1 and K2 be convex bounded and closed sets. It is known that if

HðK1;K2Þps; where

HðK1;K2Þ :¼ max sup
z1AK1

inf
z2AK2

jjz1 	 z2jj; sup
z1AK2

inf
z2AK1

jjz1 	 z2jj
� �

is the Hausdorff distance between K1 and K2; then the following lemma is valid.

Lemma 2.1 (Alber [1], Alber and Notik [6]). If E is a uniformly convex space, dEðeÞ
its modulus of convexity, and d	1

E ð�Þ is the inverse function, then

jjPK1
x 	 PK2

xjjpC1d
	1
E ð4Lðd þ rÞsÞ; ð2:1Þ

where PK is a metric projection on the set E; r ¼ jjxjj; d ¼ maxfd1; d2g; di ¼
distðy;KiÞ; i ¼ 1; 2; y is the origin of E; C1 ¼ 2maxf1; r þ dg:

In the sequel, we shall also make use of the following lemmas.

Lemma 2.2 (Alber [1]). If E is a uniformly convex and uniformly smooth Banach

space, then the inequalities

8C2dEðjjx 	 yjj=4CÞpVðx; yÞp4C2rEð4jjx 	 yjj=CÞ ð2:2Þ

hold for all x and y in E, where C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjjxjj2 þ jjyjj2Þ=2

q
: If jjxjjpR and jjyjjpR; then

2L	1R2dEðjjx 	 yjj=4RÞpVðx; yÞp4LR2rEð4jjx 	 yjj=RÞ: ð2:3Þ

Lemma 2.3 (Alber [1], Alber and Notik [6]). If E is a uniformly convex and uniformly

smooth Banach space and if jjxjjpR and jjyjjpR; then

ð2LÞ	1
R2dEðjjx 	 yjj=2RÞp/Jx 	 Jy; x 	 ySp2LR2rEð4jjx 	 yjj=RÞ ð2:4Þ
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and

jjJx 	 JyjjEnp8RhEð16Ljjx 	 yjj=RÞ; ð2:5Þ
where 1oLo1:7 hold.

Lemma 2.4 (Alber and Guerre-Delabriere [3], Alber and Reich [7]). Let fang; fbng;
flng and fgng be sequences of nonnegative numbers such that fangDð0; 1�;

P
an ¼

N;
P

bnoN and
gn

an
-0 as n-N:

If the recursive inequality

lnþ1pð1þ bnÞln 	 ancðlnÞ þ gn; n ¼ 1; 2;y

is given, where cðlÞ is a continuous and nondecreasing function cðtÞ defined on Rþ such

that c is positive on RþWf0g; cð0Þ ¼ 0; limt-N cðtÞ ¼ þN: Then,

(1) ln-0 as n-N;
(2) there exists a subsequence flnl

gCflng; lX1; such that

lnl
pc	1 1Pnl

1 am

þ %gnl

anl

;

	 

; where %gnl

¼ gnl
þ bnl

M;

for some M40; ð2:16Þ

lnlþ1pc	1 1Pnl

1 am

þ %gnl

anl

	 

þ %gnl

; ð2:17Þ

lnplnlþ1 	
Xn	1

nlþ1

am

Am

; nl þ 1pnonlþ1; Am ¼
Xm	1

1

ai; ð2:18Þ

lnþ1pl1 	
Xn

1

am

Am

pl1; 1pnpn1 	 1; ð2:19Þ

1pn1psmax ¼ max s :
Xs

1

am

Am

pl1

( )
: ð2:20Þ

3. Main results

3.1. Successive approximations in Banach spaces

In this section, we give new definitions and prove our main theorems.

Definition 3.1. Let K be a nonempty subset of a real Banach space E: A map
T : K-E is called asymptotically weakly suppressive of class CcðtÞ if there exists a

continuous and nondecreasing function cðtÞ defined on Rþ such that c is positive on

RþWf0g; cð0Þ ¼ 0; limt-N cðtÞ ¼ þN and 8x; yAK there exists fkngD½1;NÞ
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with limn-N kn ¼ 1; such that

VðTðPK TÞn	1
x; TðPK TÞn	1

yÞpknVðx; yÞ 	 cðVðx; yÞÞ; 8nX1: ð3:1Þ

Let FðTÞ : fxAK : Tx ¼ xg; then T is called asymptotically weakly hemi-suppressive

if FðTÞa| and inequality (3.1) holds for every xAK and yAFðTÞ:
The map T : K-E is called asymptotically nonextensive if, for all x; yAK ; there

exists knX1; with limn-N kn ¼ 1; such that

VðTðPK TÞn	1
x; TðPK TÞn	1

yÞpknVðx; yÞ; 8 nX1; ð3:2Þ

and it is called asymptotically quasi-nonextensive, if FðTÞa| and inequality (3.2)
holds for every xAK and yAFðTÞ:

Remark 3.2. It is easy to see that the class of weakly suppressive maps with fixed
points is a subclass of the class of asymptotically weakly hemi-suppressive maps; and
the class of nonextensive maps with fixed points is a subclass of class of
asymptotically quasi-nonextensive maps. Furthermore, we observe that, in Hilbert
spaces and for self-maps, our definition of asymptotically nonextensive maps
coincides with the definition of asymptotically nonexpansive maps introduced by
Göebel and Kirk [12] and studied by various authors.

We now prove the following theorems.

Theorem 3.3. Let K be a closed convex subset of a uniformly convex and uniformly

smooth Banach space E. Let T : K-E be an asymptotically weakly suppressive

operator of class CcðtÞ with sequence fkngD½1; NÞ such that
P

N

n¼1ðkn 	 1ÞoN:

Suppose FðTÞa| and for arbitrary x1AK let the sequence fxng be defined by

xnþ1 :¼ ðPK TÞn
xn; nX1: ð3:3Þ

Then, fxng converges strongly to some xnAFðTÞ:

Proof. Let xnAFðTÞ: Set bn :¼ kn 	 1: Then, by the definition of asymptotically
weakly suppressive map and property of PK ; we have that

Vðxnþ1; xnÞ ¼VððPK TÞn
xn; ðPK TÞn

xnÞ

pVðTðPK TÞn	1
xn;TðPK TÞn	1

xnÞ

p knVðxn; xnÞ 	 cðVðxn; xnÞÞ

¼ ð1þ bnÞVðxn; xnÞ 	 cðVðxn; xnÞÞpexp
Xn

j¼1

bj

 !
Vðx1; xnÞ; ð3:4Þ

so that Vðxn; xnÞ is bounded. If we now set ln :¼ Vðxn; xnÞ; Lemma 2.4 and

inequality (3.4) yield limn-N Vðxn; xnÞ ¼ 0: Consequently, from Lemma 2.2, there
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exists R40 such that

lim
n-N

dEðjjxn 	 xnjj=4RÞ ¼ 0:

Then, by the property of dEðxÞ; limn-N jjxn 	 xnjj ¼ 0: The proof is complete. &

It follows from the above proof that Theorem 3.3 is valid for asymptotically
weakly hemi-suppressive maps. Thus, from Remark 3.2 we have that Theorem 2.7 of
[4] is a special case of Theorem 3.3 in which kn ¼ 1 for all positive integers n:

Theorem 3.4. Let K be a closed convex subset of a uniformly smooth and uniformly

convex Banach space E. Let T : K-E be an asymptotically nonextensive operator with

sequence fkngD½1; NÞ such that
P

N

n¼1 ðkn 	 1ÞoN: Suppose FðTÞa| and for

arbitrary x1AK let the sequence fxng be defined by

xnþ1 :¼ ðPK TÞn
xn; nX1: ð3:5Þ

(i) If the operator A :¼ I 	 T is demi-closed and jjxnþ1 	 xnjj-0; then

limn-N Axn ¼ 0 and all weak accumulation points of fxng belong to the fixed

point set FðTÞ of T.
(ii) In addition, if either FðTÞ is a singleton, or the duality mapping j is weakly

sequentially continuous (on some bounded set containing fxng), then fxng
converges weakly to a point xnAFðTÞ:

Proof. Let xnAFðTÞ and set bn :¼ kn 	 1: Then, from (3.5) and property of PK ; we
get that

Vðxnþ1; xnÞ ¼VððPK TÞn
xn; ðPK TÞn

xnÞ

pVðTðPK TÞn	1
xn; xnÞ 	 VðTðPK TÞn	1

xn; ðPK TÞn
xnÞ

p knVðxn; xnÞ 	 VðTðPK TÞn	1
xn; ðPK TÞn

xnÞ

¼ ð1þ bnÞVðxn; xnÞ 	 VðTðPK TÞn	1
xn; ðPK TÞn

xnÞ

p exp
Xn

j¼1

bj

 !
Vðx1; xnÞ: ð3:6Þ

This implies that Vðxn; xnÞ is bounded. From (3.6), we have

VðTðPK TÞn	1
xn; ðPK TÞn

xnÞpð1þ bnÞVðxn; xnÞ 	 Vðxnþ1; xnÞ

and hence
P

VðTðPK TÞn	1
xn; ðPK TÞn

xnÞoN: Thus, as in the proof of Theorem
3.3, we get that

lim
n-N

jjxnþ1 	 TðPK TÞn	1
xnjj ¼ 0: ð3:7Þ

This, with our assumption, gives

jjTðPK TÞn	1
xn 	 xnjjpjjTðPK TÞn	1

xn 	 xnþ1jj þ jjxn 	 xnþ1jj-0: ð3:8Þ
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Now, we show that jjTxn 	 xnjj-0 as n-N: But

jjTxn 	 xnjj ¼ jjTxn 	 TðPK TÞn	1
xn þ TðPK TÞn	1

xn 	 xnjj

p jjTxn 	 TðPK TÞn	1
xnjj þ jjTðPK TÞn	1

xn 	 xnjj

¼ jjTðPK TÞn	1
xn	1 	 TðPK TÞn	1

xnjj þ jjTðPK TÞn	1
xn 	 xnjj: ð3:9Þ

Since by assumption jjxnþ1 	 xnjj-0; we have by Lemma 2.2 that

Vðxnþ1; xnÞp4C2rEð4jjxnþ1 	 xnjj=CÞ-0; for some C40;

which implies Vðxnþ1; xnÞ-0 as n-N; and hence, Vðxn	1; xnÞ-0 as n-N:
Again by Lemma 2.2, and the asymptotic nonextensive property of T ; we have

8C2dEðjjTðPK TÞn	1
xn	1 	 TðPK TÞn	1

xnjj=4CÞ

pVðTðPK TÞn	1
xn	1;TðPK TÞn	1

xnÞ

pknVðxn	1; xnÞ-0 as n-N:

Therefore,

lim
n-N

jjTðPK TÞn	1
xn	1 	 TðPK TÞn	1

xnjj ¼ 0: ð3:10Þ

Using (3.8) and (3.10), inequality (3.9) gives jjTxn 	 xnjj-0 as n-N: The
remainder of the proof follows as in the proof of Theorem 2.8 of [4]. &

In what follows, we study the iterative method with perturbed maps Tn : K-E

defined by (3.11)

ynþ1 ¼ ðPK TnÞn
yn; nX1: ð3:11Þ

Before we state and prove our next theorem, we first introduce the following
definition.

Definition 3.5. Let K be a nonempty subset of a real Banach space E: A map
T : K-E is called asymptotically weakly contractive of class CcðtÞ if there exists a real

sequence fkngD½1;NÞ such that limn-N kn ¼ 1 and there exists cðtÞ as in Definition
3.1 such that

jjTðPK TÞn	1
x 	 TðPK TÞn	1

yjjpknjjx 	 yjj 	 cðjjx 	 yjjÞ; 8x; yAK :

Theorem 3.6. Let K be a closed convex subset of a uniformly convex and uniformly

smooth Banach space E. Let T : K-E be a map such that TðPK TÞn	1
is bounded and

PK T : K-K is asymptotically weakly contractive of class CcðtÞ with fkngD½1;NÞ
such that

P
N

n¼1 ðkn 	 1ÞoN; and let xnAFðTÞ: Suppose that there exist sequences of

positive numbers fdng and fhng converging to zero as n-N; a finite positive function

gðtÞ defined on Rþ such that for all nX1;

jjTnðPK TnÞn	1
v 	 TðPK TÞn	1

vjjphngðjjvjjÞ þ dn; 8vAK : ð3:12Þ
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(1) If the iterative sequence (3.11), starting at an arbitrary y1AK is bounded, say by

M40; or

(2) if limn-N sn ¼ 0; where sn ¼ jjðPK TnÞn
yn 	 ðPK TÞn

ynjj; then it converges in

norm to the point xn: Moreover, there exists a subsequence fynl
gCfyng; lX1; such that

jjynl
	 xnjjpc	1 1

nl

þ %gnl

	 

; ð3:13Þ

where %gn is given by (3.19). Furthermore,

jjynlþ1 	 xnjjpc	1 1

nl

þ %gnl

	 

þ %gnl

; ð3:14Þ

jjyn 	 xnjjpjjynlþ1 	 xnjj 	
Xn	1

nlþ1

1

m
; nl þ 1pnonlþ1; ð3:15Þ

jjynþ1 	 xnjjpjjy1 	 xnjj 	
Xn

1

1

m
pjjy1 	 xnjj; 1pnpn1 	 1; ð3:16Þ

1pn1psmax ¼ max s :
Xs

1

1

m
pjjy1 	 xnjj

( )
: ð3:17Þ

Proof. Set bn :¼ kn 	 1: From (3.11) and property of PK T ; we have that

jjynþ1 	 xnjj ¼ jjðPK TnÞn
yn 	 ðPK TÞn

xnjj

p jjðPK TÞn
yn 	 ðPK TÞn

xnjj þ jjðPK TnÞn
yn 	 ðPK TÞn

ynjj

p knjjyn 	 xnjj 	 cðjjyn 	 xnjjÞ þ jjðPK TnÞn
yn 	 ðPK TÞn

ynjj

¼ ð1þ bnÞjjyn 	 xnjj 	 cðjjyn 	 xnjjÞ þ jjðPK TnÞn
yn

	 ðPK TÞn
ynjj: ð3:18Þ

Now, suppose (1) is satisfied. Then we have fTðPK TÞn	1
yng is bounded, and hence

by (3.12) fTnðPK TnÞn	1
yng is bounded.

Thus, by inequality (2.5)

jjJðTnðPK TnÞn	1
ynÞ 	 JðTðPK TÞn	1

ynÞjj

p8RhEð16LjjTnðPK TnÞn	1
yn 	 TðPK TÞn	1

ynjj=RÞ

p8RhE

16L

R
ðhngðMÞ þ dnÞ

	 

:
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This implies, by property (c) of PK ; that

jjðPK TnÞn
yn 	 ðPK TÞn

ynjj

p4LRg	1
E ðjjJðTnðPK TnÞn	1

ynÞ 	 JðTðPK TÞn	1
ynÞjj=2RÞ

p4RLg	1
E 4hE

16L

R
ðhngðMÞ þ dnÞ

	 
	 


and hence from the property of g	1
E and hE we have that gn :¼ jjðPK TnÞn

yn 	
ðPK TÞn

ynjj-0 as hn; dn-0:
Therefore, using inequality (3.18) all conditions of Lemma 2.4 are satisfied with

ai ¼ 1 8iX1: So, the conclusions hold with

%gn :¼ gn þ bnM 0 for some M 040: ð3:19Þ

Suppose (2) is satisfied. Then, setting ln :¼ jjyn 	 xnjj; from (3.18) we get by Lemma
2.4 that the conclusions hold. &

Remark 3.7. Observe that if PK T is weakly contractive then it is asymptotically
weakly contractive with kn ¼ 1: Thus Theorem 3.6 extends Theorem 2.10 of [4].
Furthermore, the requirement that 0AK imposed in Theorem 2.10 of [4] is not
needed in our more general Theorem 3.6.

3.2. Successive approximations in a Hilbert space

In a Hilbert space, the recursion formula (3.3) becomes

xnþ1 ¼ ðPK TÞn
xn; n ¼ 1; 2;y; x1AK : ð3:20Þ

We have the following theorem for asymptotically weakly contractive operators,
whose proof follows as in the proof of Theorem 3.3.

Theorem 3.8. Let K be a closed convex subset of the Hilbert space H, T be an

asymptotically weakly contractive map from K to H of class CcðtÞ with fkngD½1;NÞ
such that

P
ðkn 	 1ÞoN and let xnAFðTÞ: Then, the assertion of Theorem 3.3 holds.

Remark 3.9. For stability theorems for the perturbed approximations of (3.20) in

Hilbert spaces, suppose that, instead of the exact operator T ; we have some sequence
fTng of perturbed maps, Tn : K-H such that (3.12) is satisfied with PK instead of
PK : By considering the iteration process

ynþ1 ¼ ðPK TnÞn
yn; n ¼ 1; 2;y; y1AK ð3:21Þ

and using the nonexpansive property of PK one easily obtains a Hilbert space version
of Theorem 3.6. In particular, Theorem 3.2 of [4] is a special case of this Hilbert
space version in which kn ¼ 1 and n ¼ 1 for all positive integers n: Furthermore,
suppose KnDDðTÞ; nX1 is a sequence of perturbed sets such that HðKn;KÞpsn;
where H is the Hausdorff metric and sn-0 as n-N: By considering the iterative
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sequence fzng defined by

znþ1 ¼ PKnþ1
TðPK TÞn	1

zn; n ¼ 1; 2;y; z1AK ð3:22Þ
and using inequality (2.1), one obtains a generalization of Theorem 3.4 of [4] (where
kn ¼ 1 and n ¼ 1 for all positive integers n).
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