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Abstract

Let K be a nonempty closed convex proper subset of a real uniformly convex and uniformly
smooth Banach space E; T : K— E be an asymptotically weakly suppressive, asymptotically
weakly contractive or asymptotically nonextensive map with F(T) = {xeK: Tx = x}#0.
Using the notion of generalized projection, iterative methods for approximating fixed points of
T are studied. Convergence theorems with estimates of convergence rates are proved.
Furthermore, the stability of the methods with respect to perturbations of the operators and
with respect to perturbations of the constraint sets are also established.
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1. Introduction

Let E be a real normed linear space with dual E*. We denote by J the normalized
duality mapping from E to 25° defined by

Jx = {f*eE% (xf*y = |IxIP = 1P},
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where { -, - > denotes the generalized duality pairing. It is well known that if E* is
strictly convex then J is single-valued and if E* is uniformly convex, then J is
uniformly continuous on bounded subsets of E. We shall denote the single-valued
duality mapping by .

Let K be a subset of a Banach space E. A map T:K—K is called a strict
contraction if there exists k€[0,1) such that ||Tx — Ty||<k||x — y||, and is called
nonexpansive if, for arbitrary x, yeK, ||Tx — Ty||<||x — y||- The map T is called
asymptotically nonexpansive if, for each x, ye K, we have ||T"x — T"y||<ku||x — yll,
where {k,} is a sequence of real numbers such that lim,, ., k, = 1. It is obvious that
for asymptotically nonexpansive mappings it may be assumed that k,>1 and that
kinn<k;, i=1,2,....

Let K be a nonempty convex subset of a real normed linear space E. For strict
contraction mappings, nonexpansive and asymptotically nonexpansive mappings T’
of K into itself with a fixed point in K, three well-known iterative methods, the
celebrated Picard method, the Mann iteration method (see, for example, [15]) and the
Ishikawa iteration method (see, for example, [13]), have successfully been employed to
approximate such fixed points. If, however, the domain of T, D(T), is a proper
subset of £ (and this is the case in several applications), and T maps K into E, these
iteration methods may not be well defined. Under this situation, for Hilbert spaces,
this problem has been overcome by the introduction of the metric projection in the
recursion formulas (see, for example, [§—10]). The advantage of this is that if K is a
nonempty closed convex subset of a Hilbert space H and Pk : H— K is the metric
projection of H onto K, then Pk is nonexpansive. This fact actually characterizes
Hilbert spaces and consequently, it is not available in more general Banach spaces.
In this connection, Alber [1] recently introduced a generalized projection operator
I g in a Banach space E which is an analogue of the metric projection in Hilbert
spaces.

Let E be a real normed linear space. Consider the functional defined by

V(x,&) = [[x|]* = 2¢{x,j(&)> + ||E|]* for x, ek, (1.1)

where j(&)eJ(&). Observe that, in a Hilbert space H, (1.1) reduces to V(x,¢&) =
llx = &[5, x, ceH.

The generalized projection Ik : E— K is a map that assigns to an arbitrary point
x € E the minimum point of the functional V'(x, §), that is, [Igx = X, where X is the
solution to the minimization problem

V(x,%) = glIEIIf( V(x,&). (1.2)

Existence and uniqueness of the operator ITx follow from the properties of the
functional V(x, £) and strict monotonicity of the mapping J (see, for example, [4]).
In Hilbert space, IIx = Pg.
Some properties of ITx used in the sequel are the following (see, for example, [4]).
(a) The operator Ik is the identity on K.
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(b) The operator ITx produces an absolutely best approximation of xe E relative
to the functional V(x, ¢), that is,

V(Hgx, &)<V (x, &) — V(x,[gx), VEeK.

Consequently, IIgx is the conditionally nonexpansive operator relative to the
functional 7 (x, ¢) in Banach spaces, i.e. V(Igx, &)<V (x,§), VEeK.

(c) The operator ITk is uniformly continuous on each bounded subset of E. Let
x, yeE, ||x||<R. ||y||<R. Then,

[T xx — gy|| <4LRgg' (I17(x) = J(0)[|/2R),

where gz! is the inverse function to gg(¢) (defined in Section 2).
Let K be a nonempty subset of a Banach space E. A map T:K—FE is called
strongly suppressive on K if there exists 0<g<1 such that for all x, yeK,

V(Tx, Ty)<qV(x,y). (1.3)

T is called weakly suppressive of class Cy, if there exists a continuous and

nondecreasing function (7) defined on R" such that y is positive on R*\ {0},
Y(0) =0, lim,, o, ¥(f) = + 00 and Vx, yeKk,

The map T is called nonextensive if
V(Tx, Ty)<V(x,y) Vx, yek. (1.5)

It is trivial to see that in Hilbert spaces, nonextensive operators are nonexpansive,
and vice versa; and strongly suppressive operators coincide with strict contractions.
Alber and Guerre-Delabriere [4] (see also [2,3,5]) introduced the above classes of
nonself maps and, assuming the existence of fixed points, proved convergence
theorems with the help of the generalized projection maps.

It is our purpose in this paper to first introduce the classes of asymptotically
weakly suppressive, asymptotically nonextensive and asymptotically weakly contrac-
tive nonself maps which are important generalizations of the classes of maps studied
by Alber and Guerre-Delabriere [4]. Then, assuming the existence of fixed points for
maps in our classes of operators, and using several results of Alber and Guerre-
Delabriere [4], we prove convergence theorems with estimates of the convergence
rates and establish the stability of our iterative methods with respect to perturbations
of operators and with respect to perturbations of the constraint sets. Our theorems
extend and improve several results of [4].

2. Preliminaries

A Banach space E is called smooth if for every xe E with ||x|| = 1, there exists a
unique j e E* such that ||j|| = |[j(x)|| = 1 (see, e.g., [14]). The modulus of smoothness
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of E is the function py: [0, 00)— [0, co) defined by

1l + b =
pe(t) = sup{ : Sl =1, bl =< b

A Banach space E is called uniformly smooth if and only if limHOI’ET“) =0. It is
known (see, e.g., [11,14,16]) that pg(t) is continuous, increasing and py(0) = 0.
Moreover, hg(t) ==t~ 'pg(t) is continuous, nondecreasing and /z(0) = 0.

The modulus of convexity of E is the function og : (0,2]— [0, 1] defined by

5r(e) = int {1 — |32 = ol = 15 & = [lx =11},

E is uniformly convex if and only if dg(¢) >0 for every e€(0,2].

It is well known (see, e.g., [11,14,16]) that Jg(e) is continuous, increasing and
0£(0) = 0. Moreover, gg(e) = ¢ '5x(e) is continuous and increasing.

Let K; and K, be convex bounded and closed sets. It is known that if
H (K, K>)<a, where

H (K, Kr) = max{ sup inf ||z; —z||, sup inf ||z —22||}
K 22€K1

21€K1 ey Z[GKZ

is the Hausdorff distance between K; and K5, then the following lemma is valid.

Lemma 2.1 (Alber [1], Alber and Notik [6]). If E is a uniformly convex space, dg(¢)
its modulus of convexity, and 5;,;1(~) is the inverse function, then

||Px,x — Pr,x|| < C10;' (4L(d + r)0), (2.1)

where Pk is a metric projection on the set E, r=||x||, d = max{d,,dr}, d; =
dist(0,K;), i = 1,2, 0 is the origin of E, C; = 2max{l,r + d}.

In the sequel, we shall also make use of the following lemmas.

Lemma 2.2 (Alber [1]). If E is a uniformly convex and uniformly smooth Banach
space, then the inequalities

8C20x(|lx — yI/4C) <V (x, ) <4Cpp(4]|x = ¥I|/C) (2.2)
hold for all x and y in E, where C = 1/ (||x||* + |[y|*)/2. I ||x|| < R and ||y|| < R, then
2L R*p(|[x — yl|/4R) < V (x,9) SALRpp(4lx — yI| /R). (2:3)

Lemma 2.3 (Alber [1], Alber and Notik [6]). If E is a uniformly convex and uniformly
smooth Banach space and if ||x|| <R and ||y|| <R, then

(L) RSk (||x = y[|/2R) < (Jx = Jy, x — y> S2LRpy(4|lx — y[|/R)  (24)
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and
1% — Jyll e <SRAE(16L][x — ]|/ R), (2.5)

where 1 <L<1.7 hold.

Lemma 2.4 (Alber and Guerre-Delabriere [3], Alber and Reich [7]). Let {o,},{f,},
{An} and {y,} be sequences of nonnegative numbers such that {o,}<(0,1], > o, =
0,3 By< o0 and * -0 as n— oo.

If the recursive inequality

)“nJrl <(1 + ﬁn))“n - anlp(iﬂ) + Vs n= la 27

is given, where W (2) is a continuous and nondecreasing function y(t) defined on R* such
that W is positive on RT\ {0}, ¥(0) = 0, lim,, o, Y(¢) = +00. Then,

(1) 4,»0 as n—> oo,
(2) there exists a subsequence {A,} ={An}, [=1, such that

1 Tn
Iy < x/fl <T + L,), where 7, =7, + B, M,
1 %m %ny
for some M >0, (2.16)
—1 1 fn/ -
)»n1+1 <l// Toc +— |+ Vg (2.17)
1 sm ny
n—1 o m—1
R VIEDS o e LSn<m, oy = >, (2.18)
n+1 1
K Olm
It <A1 —Z %mgil, l<n<n — 1, (2.19)
LB
1<n <Spax = max{s : Z %";g/ll}. (2.20)

3. Main results
3.1. Successive approximations in Banach spaces
In this section, we give new definitions and prove our main theorems.

Definition 3.1. Let K be a nonempty subset of a real Banach space E. A map
T:K—E is called asymptotically weakly suppressive of class Cy, if there exists a
continuous and nondecreasing function (¢) defined on R* such that y is positive on
RENA{0}, ¥(0) =0, lim,, o, ¥(¢) = +co and Vx, yeK there exists {k,}<[l, )
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with lim,_, , k, = 1, such that
V(T(IT)"'x, TIT)" ' p)<k,V(x,y) =¥ (V(x,p), Vn=1. (3.1)

Let F(T):{xeK : Tx = x}, then T is called asymptotically weakly hemi-suppressive
if F(T)#0 and inequality (3.1) holds for every xe K and ye F(T).

The map T : K— E is called asymptotically nonextensive if, for all x, ye K, there
exists k,>1, with lim,_, ,, k, = 1, such that

V(T(IT)" 'x, T(IxT)"'y)<k,V(x,y), Y n=1, (3.2)

and it is called asymptotically quasi-nonextensive, if F(T)#0 and inequality (3.2)
holds for every xe K and ye F(T).

Remark 3.2. It is easy to see that the class of weakly suppressive maps with fixed
points is a subclass of the class of asymptotically weakly hemi-suppressive maps; and
the class of nonextensive maps with fixed points is a subclass of class of
asymptotically quasi-nonextensive maps. Furthermore, we observe that, in Hilbert
spaces and for self-maps, our definition of asymptotically nonextensive maps
coincides with the definition of asymptotically nonexpansive maps introduced by
Goebel and Kirk [12] and studied by various authors.

We now prove the following theorems.

Theorem 3.3. Let K be a closed convex subset of a uniformly convex and uniformly
smooth Banach space E. Let T:K—E be an asymptotically weakly suppressive
operator of class Cyy with sequence {k,}<[1, o) such that " (k, —1)< 0.
Suppose F(T)#0 and for arbitrary x, €K let the sequence {x,} be defined by

Xpr1 = (gT)'x,, n>1. (3.3)
Then, {x,} converges strongly to some x*e F(T).

Proof. Let x*e F(T). Set 8, =k, — 1. Then, by the definition of asymptotically
weakly suppressive map and property of ITg, we have that

V(xXpi1,X*) =V((ITgT)" xn, (Mg T)"x*)
< V(T(HgT)" 'x,, T(HT)" ' x¥%)
kn V(xm *) - lp(V(Xn, X*))

= (14 B,) V (o, x*) = (¥ (o, X* <exp<z ﬁ,) (x1,x%), (3.4)

so that V(x,,x*) is bounded. If we now set 4, = V(x,,x*), Lemma 2.4 and
inequality (3.4) yield lim,,_, o, V' (x,, x*) = 0. Consequently, from Lemma 2.2, there
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exists R>0 such that
lim 6g(||x, — x*||/4R) = 0.

Then, by the property of dg(&), lim,_, o ||x, — x*|| = 0. The proof is complete. [

It follows from the above proof that Theorem 3.3 is valid for asymptotically
weakly hemi-suppressive maps. Thus, from Remark 3.2 we have that Theorem 2.7 of
[4] is a special case of Theorem 3.3 in which &, = 1 for all positive integers n.

Theorem 3.4. Let K be a closed convex subset of a uniformly smooth and uniformly
convex Banach space E. Let T : K — E be an asymptotically nonextensive operator with
sequence {k,}<|[l, oo) such that Y,°, (k,—1) <oo. Suppose F(T)#0 and for
arbitrary x1 €K let the sequence {x,} be defined by

Xptl — (HKT)an, I’l>1 (35)

(i) If the operator A=1-T is demi-closed and ||x,41 — x,||—>0, then
lim,,_, o, Ax, = 0 and all weak accumulation points of {x,} belong to the fixed
point set F(T) of T.

(ii) In addition, if either F(T) is a singleton, or the duality mapping j is weakly
sequentially continuous (on some bounded set containing {x,}), then {x,}
converges weakly to a point x*e F(T).

Proof. Let x*e F(T) and set f8, = k, — 1. Then, from (3.5) and property of ITg, we
get that

V(Xnt1,x*) = V(g T)"xn, (g T)"x*)
< V(TUET)" 0, x*) = V(T T)" x, (1 T)"x,)
< oV (3, X*) = V(T T)" ™ x, (I T)"x,)
= (14 BV (e, x*) = V(T T)" x50, (T T)"x)

< exp (Z /3]> (x1,x™). (3.6)

This implies that V(x,, x*) is bounded. From (3.6), we have
V(TTKT)"™ %y (M T)" %) (14 BV (%, X¥) = V (051, 5%)

and hence S V(T (IIxT)" ' x,, (HgT)"x,) < co. Thus, as in the proof of Theorem
3.3, we get that

1im [ — T(TRT)" x| = 0. (3.7)

This, with our assumption, gives

|TIRT)" 0 = il [T TR T X = ||+ [0 = X1 [| 0. (3-8)
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Now, we show that ||Tx, — x,|| >0 as n— co. But
1 Tx0 — Xl = || Ty — T T)" 5 + T T)" " x — X4 |
< |7, = TR T)"™ x| + (|7 (T T)" 3 = |
=||T(HT)" " xpey — THIT)" x| + || THTT)" ' x — x4l (3.9)
Since by assumption ||x,;+; — x,||—0, we have by Lemma 2.2 that
V (Xpi1,Xn) <4C2pp(4]|Xns1 — x,||/C) =0, for some C>0,

which implies V' (x,+1,x,)—0 as n— oo; and hence, V' (x,-1,x,)—>0 as n— o0.
Again by Lemma 2.2, and the asymptotic nonextensive property of 7', we have

8C20p(||T(HkT)" " xuey — T(ITgT)" x| /AC)
<SV(T(HgT)" "Xy, T T)" ' x,)
<k V(xp_1,x,)—>0 as n—oo.
Therefore,

lim ||[T(IxT)" ' xp_1 — T(HgT)" 'x,]| = 0. (3.10)

n— oo

Using (3.8) and (3.10), inequality (3.9) gives ||Tx, — x,||>0 as n— 0. The
remainder of the proof follows as in the proof of Theorem 2.8 of [4]. [

In what follows, we study the iterative method with perturbed maps 7,: K— FE
defined by (3.11)

Yur1 = (g Ty)"yn, n=1. (3.11)

Before we state and prove our next theorem, we first introduce the following
definition.

Definition 3.5. Let K be a nonempty subset of a real Banach space E. A map
T : K — E'is called asymptotically weakly contractive of class Cy, if there exists a real
sequence {k,} =[1, oo) such that lim,_, ,, k, = 1 and there exists (¢) as in Definition
3.1 such that

IT(IxT)"" x = T(HxT)"yl|<hallx = 3l = 9(Ix = yl)),  Vx,yek.

Theorem 3.6. Let K be a closed convex subset of a uniformly convex and uniformly
smooth Banach space E. Let T : K — E be a map such that T(IIxT)"™" is bounded and
kT :K—K is asymptotically weakly contractive of class Cyy with {k,}<[1, )
such that y," | (k, — 1)< 0, and let x*€ F(T). Suppose that there exist sequences of
positive numbers {0,} and {h,} converging to zero as n— oo, a finite positive function
g(1) defined on R* such that for all n>1,

T, (T T,)" v — T(HgT)" " 0||<hug(||0]]) + 65, VoeK. (3.12)
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(1) If the iterative sequence (3.11), starting at an arbitrary y| € K is bounded, say by
M >0, or

(2) if lim,_, o, 6, = 0, where a, = ||(HgT,)"yy — (IIxT)"y,||, then it converges in
norm to the point x*. Moreover, there exists a subsequence {y,, } ={yn}, [ =1, such that

a1
Ion =l (14 ). (3.13)
where 7, is given by (3.19). Furthermore,
* a1 =
||yn;+l - X ||<lﬁ ;/+an + Vs (314)
n—1
Wy — X < |y — x| — Z — I<n<nyy, (3.15)
n+1
1
lomes =l =l =37 sl =%l A< -1, (3.16)
1
1<”1<Smax:maX{SIZE<||y1—X*||}- (3.17)

Proof. Set 5, =k, — 1. From (3.11) and property of I1xT, we have that
ner = XF| =T T)"yn = (T T)"X7|
< (T T)"yn — (T T)" x| + ||k Tn)"yu — (Hx T)" yul|
< knllyn = X¥|| = (llyn — X*[) + [Tk Tn)"yn — (T T)" yll
=L+ B)lln = x| = Yllyw = x*[) + [[(Hx )"y
— (I T)"yull. (3.18)

Now, suppose (1) is satisfied. Then we have {T(HKT)”_lyn} is bounded, and hence

by (3.12) {T,(ITxT,,)"'y,} is bounded.
Thus, by inequality (2.5)

I (To(TxT,)" ) = J(T (KT )|
S8Rh5(16L||T,,(HKT,,)"_1y,, - T(HKT)n_lynH/R)

<8Rie (“5 (a(00) +5,) )
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This implies, by property (c) of IIk, that
(T kT0)"vn — (I T)" |
<4LRg; (I (T (T T,)" ) = J(T(HkT)" ™ 3)[|/2R)

<4RLg;' <4hE (1% (hag(M) + 5n))>

and hence from the property of gz' and hz we have that v, = ||(HxT,)"y, —
(IkT)"y,|| =0 as hy,, 6,—0.

Therefore, using inequality (3.18) all conditions of Lemma 2.4 are satisfied with
o; = 1 Vi=1. So, the conclusions hold with

Tu =7, + B,M' for some M’'>0. (3.19)

Suppose (2) is satisfied. Then, setting 2, == ||y, — x*||, from (3.18) we get by Lemma
2.4 that the conclusions hold. [

Remark 3.7. Observe that if I[IxT is weakly contractive then it is asymptotically
weakly contractive with k, = 1. Thus Theorem 3.6 extends Theorem 2.10 of [4].
Furthermore, the requirement that 0 K imposed in Theorem 2.10 of [4] is not
needed in our more general Theorem 3.6.

3.2. Successive approximations in a Hilbert space

In a Hilbert space, the recursion formula (3.3) becomes
Xpp1 = (PxT)'x,, n=12 ..., x1ek. (3.20)

We have the following theorem for asymptotically weakly contractive operators,
whose proof follows as in the proof of Theorem 3.3.

Theorem 3.8. Let K be a closed convex subset of the Hilbert space H, T be an
asymptotically weakly contractive map from K to H of class Cy ) with {k,}<[1, o)
such that > \(k, — 1)< oo and let x*€ F(T). Then, the assertion of Theorem 3.3 holds.

Remark 3.9. For stability theorems for the perturbed approximations of (3.20) in
Hilbert spaces, suppose that, instead of the exact operator 7', we have some sequence
{T,} of perturbed maps, T, : K— H such that (3.12) is satisfied with Pg instead of
Il . By considering the iteration process

Yur1 = (PxT)"'yy, n=12..., yeK (3.21)

and using the nonexpansive property of Pk one easily obtains a Hilbert space version
of Theorem 3.6. In particular, Theorem 3.2 of [4] is a special case of this Hilbert
space version in which k, =1 and n =1 for all positive integers n. Furthermore,
suppose K,=D(T),n>1 is a sequence of perturbed sets such that #(K,, K) <o,
where # is the Hausdorff metric and ¢, —0 as n— oo. By considering the iterative
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sequence {z,} defined by
Zun1 = P, T(PxT)" 'z, n=12,..., z1€K (3.22)

and using inequality (2.1), one obtains a generalization of Theorem 3.4 of [4] (where
k, =1 and n =1 for all positive integers n).
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